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A Primer on Quantum Channel Capacity and Its
Applications to Optical Communication
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ABSTRACT. — In this article, we review the capacity of a quantum channel for trans-

mitting classical and quantum information, with our primary focus being the context

of optical communication. We discuss the necessary trade-offs between the rates of

sending both bits and qubits over a quantum channel, and how these rates are affected

in the presence of shared entanglement between sender and receiver. We also review

several protocols which achieve these rates. Then, shifting our focus to the free-space

optical channel, we review common quantum states of photons and methods for modu-

lating information on them. We discuss the capacities associated with these modulation

techniques as well as the prospect of feasibly generating and exploiting entanglement to

boost the classical capacity of optical free-space communication.

I. Introduction

Due to the bosonic nature of photons, the free-space optical channel is an instance of a

quantum channel. Not only can it be used to transmit classical information (measured

in bits), but it can transmit quantum information (measured in qubits) and be used to

establish shared entanglement (measured in ebits) between sender and receiver. Thus,

in order to optimally utilize the free-space optical channel, it is necessary to study the

trade-off between these three resources.

The various capacities of the general quantum channel have been studied for decades,

though have yet to be completely characterized. Whereas a classical channel has a single

associated capacity, a quantum channel has four: the classical capacity for transmitting

bits, the quantum capacity for transmitting qubits, the entanglement-assisted classical

capacity for transmitting bits while consuming ebits, and the private classical capacity
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for transmitting bits which remain secret from an eavesdropper.

In this article, we review what is known about the various capacities of the general quan-

tum channel as well as the trade-offs between the rates at which a quantum channel

can transmit classical and quantum information while consuming (or producing) shared

entanglement between the sender and the receiver. We will discuss several known pro-

tocols for trading between these resources. We will then shift our focus to the lossy

bosonic channel, which is the model for free-space optical communication.

It should be emphasized that this article is intended primarily for those with some

background in information theory who require a primer on quantum optical commu-

nications. As such, Section II reviews some of the basic elements of quantum theory,

including a discussion on quantum states, purifications, and measurements. Sections

III and IV generalize familiar concepts and quantities from classical information theory

to the quantum regime. Section III focuses on entropy and data compression, while

Section IV discusses quantum mutual information and several related quantities, some

of which do not have classical counterparts. Sections IV-C and IV-D also review the

formal definition of a quantum channel and the notion of the various resources involved

in quantum communication. Section V realizes several notorious protocols as trade-offs

between these resources, including super-dense coding and teleportation.

Readers with more quantum background may wish to skip directly to Section VI, in

which we formally define the four capacities of a quantum channel which we mentioned

above, and summarize what is known about how to quantify or bound them. In Section

VII, we discuss several achievable protocols which generalize those from previous sec-

tions. We broach on the use of “noisy” versions of the basic quantum resources, such

as partially entangled states or noisy channels which do not maintain the coherence of

qubits, and we briefly discuss how arbitrary entangled states can be converted to others,

thus justifying the ability to quantify the amount of entanglement between states as a

resource for quantum communication.

Finally, in Section VIII, we focus on optical communication, beginning with a review of

common optical quantum states in Section VIII-A and the lossy bosonic channel—our

model for the free-space optical quantum channel—in Section VIII-B. We also review the

aforementioned capacities in this context, with an emphasis on entanglement-assisted

classical communication, and we discuss the feasibility of boosting the rate of classical

communication in a setting in which prior shared entanglement is limited. One impor-

tant caveat to the earlier results about the capacities of the general quantum channel

is that we typically assume access to any theoretically-permissible quantum states and

receivers for use in communication. In practice, we are limited to what we can produce

in the lab. Thus, in Section VIII-C, we review how well we can approach the classical

capacity of the bosonic channel when restricting ourselves to several common types of

photon states for communication.

Much of the material in Sections III-VII is substantially elaborated in Mark Wilde’s
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textbook Quantum Shannon Theory [1]. This is an invaluable resource, and we borrow

heavily from the notation and terminology he establishes therein. Our hope is that

these sections provide a means for the interested reader to quickly digest and gain a

working knowledge of this material.

II. Quantum Basics

A. Quantum States and Composite States

We begin with several fundamental definitions. Let H be a complex Hilbert space

representing a quantum state space. In much of our discussion, we will take H to be

discrete and even finite dimensional with the understanding that generalizations are

straightforward. We will consider two different types of quantum states. A pure state

is a vector |ψ〉 ∈ H, where we have used the traditional bra-ket notation. As such, we

denote the adjoint of |ψ〉 as 〈ψ|, and the inner product between two pure states |ψ1〉 and

|ψ2〉 as 〈ψ1|ψ2〉. Likewise, their outer product may be written |ψ1〉〈ψ2|. If we let {|i〉}
be an orthonormal basis for H, where i indexes the basis elements, then assuming a pure

state |ψ〉 is normalized, we interpret |〈i|ψ〉|2 as the probability that |ψ〉 evolves to state

|i〉 when measured in the {|i〉} basis. We will discuss the evolution and measurement of

quantum states in greater detail shortly, but in light of this detail we will assume that

our pure states are normalized, |〈ψ|ψ〉| = 1, and we only distinguish pure states up to

a phase offset (that is, we do not distinguish between |ψ〉 and α|ψ〉 for |α| = 1).

We may also consider an ensemble of pure states {pi, |ψi〉}, 0 ≤ pi ≤ 1,
∑
i pi = 1, which

we call a mixed state, with corresponding density operator ρ =
∑
i pi|ψi〉〈ψi|. We can

interpret ρ as a “noisy” quantum state. The density operators of this form are precisely

the set of Hermitian nonnegative operators of trace 1 (see, for instance, [1]). Given

a pure state |ψ〉, we will sometimes adopt the shorthand ψ := |ψ〉〈ψ| to represent its

density operator (corresponding to the ensemble {1, |ψ〉}). Given a subspace M ⊆ H,

the probability of observing a mixed state ρ in this subspace is P (ρ,M) := Tr (ΠMρ) ,

where ΠM is the projection operator onto M.

Given two pure states ψA ∈ HA and ψB ∈ HB , they can be thought of as sharing

a quantum state ψAB in the tensor space HA ⊗ HB . Similarly, two mixed states ρA

and ρB share a state ρAB ∈ HA ⊗ HB . We call the ψAB and ρAB composite states,

which live in the composite quantum system HA⊗HB . For a composite state ρAB , the

corresponding ρA and ρB are called local operators.

If a composite state ρAB can be decomposed in the form ρAB =
∑
x pxρA,x⊗ρB,x where

{px} forms a probability distribution, then we call the state separable. Otherwise, we

call it entangled. Here, ‘⊗’ denotes the Kronecker product of operators. As shorthand,

we will often denote the pure separable state |ψ〉A⊗|ψ〉B simply as |ψ〉A|ψ〉B . Separable

states are statistically independent in the sense that, given subspaces MA ⊂ HA and
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MB ⊂ HB , we have

P (ρA ⊗ ρB ,MA ⊗MB) = Tr (ΠMA
⊗ΠMB

ρA ⊗ ρB)

= Tr (ΠMA
ρA) Tr (ΠMB

ρB) = P (ρA,MA)P (ρB ,MB). (1)

That is, the probability of observing ρA ⊗ ρB in the spaceMA ⊗MB is the product of

the probabilities of observing the local operators in their respective subspaces.

In general, the composite operator ρAB cannot be determined from knowledge of the

individual states ρA and ρB alone, but depends on the interrelation between them. The

local states, however, can be recovered by taking the partial trace of the composite state:

ρA = TrHB (ρAB) and ρB = TrHA (ρAB). The partial trace is defined as follows:

Definition 1 (Partial Trace). Let XAB be a linear operator over HA⊗HB. The partial

trace of XAB over HB is the linear operator TrHB (XAB) over HA defined as

TrHB (XAB) :=
∑
i

(IA ⊗ 〈i|B)XAB(IA ⊗ |i〉B), (2)

where {|i〉B} is an orthonormal basis for HB. Equivalently, if XAB can be written (in

any way) as
∑
mAm⊗Bm, then TrHB (XAB) =

∑
mAmTr (Bm). The partial trace over

HA, TrHA (XAB) is defined similarly. We define the local operators XA := TrHB (XAB)

and XB := TrHA (XAB), and use the phrase “tracing over HB” (resp. “HA”) to refer

to them.

Given a composite density operator ρAB with local operator ρA = TrHB (ρAB), and

a subspace MA ⊂ HA, we can immediately find the probability of observing ρA

in space MA from the relation P (ρA,MA) = Tr (ΠMA
ρA) = Tr (ΠMA⊗HBρAB) =

P (ρAB ,MA ⊗HB).

B. Purifications and the Schmidt Decomposition

Given a composite pure state |ψ〉AR ∈ HA ⊗ HR with corresponding operator ψAR =

|ψ〉〈ψ|AR, the local operator ρA = TrHR (ψAR) is in general a mixed state—the partial

trace operation need not preserve purity of states. In this case, we call |ψ〉AR a purifica-

tion for the mixed state ρA with respect to the reference space HR [1,2]. Interestingly,

it turns out that any mixed state can be expressed as the partial trace of a pure state

over a larger system:

Theorem 1 (Purifications). Any mixed state ρA ∈ HA has a purification |ψ〉AR ∈ HA⊗
HR with respect to some reference space HR, and we may take dim(HR) = dim(HA).

Proof. Taking a spectral decomposition, we may express ρA in the form ρA =
∑
x px|x〉〈x|A,

where the |x〉A are orthonormal. If we take a Hilbert space HR isomorphic to HA,

with orthonormal basis {|x〉R}, then a purification is given by |ψ〉AR =
∑
x

√
px|x〉A ⊗

|x〉R.
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The canonical purification of ρA is the state (IR ⊗
√
ρA)|Γ〉RA, where IR is the iden-

tity on HR and |Γ〉RA is the “maximally entangled state” |Γ〉RA :=
∑
i |i〉R|i〉A for

orthonormal bases {|i〉R} and {|i〉A} of HR and HA respectively. Furthermore, one

can easily verify that any two purifications are unique up to isometry: if |ψ〉AR1 and

|ψ〉AR2 are purifications of ρA, with dim(HR1) ≤ dim(HR2), then there is an isometry

V : HR1
→ HR2

(V ∗V = IR1
) such that |ψ〉AR2

= (IA ⊗ V )|ψ〉AR1
.

A state ρA is pure if and only if rank(ρA) = 1. In general, rank(ρA) is the smallest

dimension of a reference space HR over which ρA can be purified. This is a consequence

of the Schmidt Decomposition:

Theorem 2 (Schmidt Decomposition). Suppose we have a pure bipartite state |ψAB〉 ∈
HA ⊗HB. Then we can decompose it as

|ψAB〉 =

d−1∑
i=0

λi|i〉A|i〉B ,

where {|i〉A} and {|i〉B} are orthonormal bases for HA and HB respectively, and the λi

are real, strictly positive, and satisfy
∑
i λ

2
i = 1. The vector [λi]i∈{0,...,d−1} is called the

vector of Schmidt coefficients, and d is called the Schmidt rank, which satisfies

d ≤ min{dim(HA),dim(HB)}.

This is proven by writing |ψ〉AB =
∑dA−1
j=0

∑dB−1
k=0 αj,k|j〉A|k〉B and considering the

singular value decomposition [αj,k] = UΛV. The diagonal elements of Λ are the λi,

and the elements of our orthonormal bases become |i〉A =
∑
j uj,i|j〉A and |i〉B =∑

k vi,k|k〉B , where the uj,i and the vi,k are the entries of U and V respectively. The

λ2
i are the nonzero eigenvalues of ρA = TrHB (|ψ〉〈ψ|AB) and ρB = TrHA (|ψ〉〈ψ|AB),

which both have rank d.

C. Measurement of Quantum States

We have already touched on the idea of measuring or observing a quantum state, but

we now formalize this concept. Let ρ ∈ H be a quantum state. A noiseless projective

quantum measurement of the state ρ corresponds to a complete set of projective op-

erators, {Πj}, which by definition satisfy the relations ΠiΠj = δijI and
∑
j Πj = I.

Each operator Πj corresponds to a possible measurement outcome, which we interpret

as observing ρ in the space Mj onto which Πj projects. The probability of observing

the jth outcome is pj = Tr (Πjρ), and observing this outcome immediately transforms

ρ to the post-measurement state
ΠjρΠj

Tr(Πjρ)
. If we repeat the measurement {Πi} on this

new state, we can see that since the Πi form a complete projective set, we will continue

to get outcome j with probability 1.

A quantum measurement can be equivalently expressed as entangling ρ with the state of

a measurement device which lives in a Hilbert space of dimension equal to the number

of measurement outcomes [3,4]. The device is initially prepared in the default state |0〉,
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and forms a separable state with ρ in the form ρ⊗ |0〉〈0|. The measurement transforms

the state of the device to one of the measurement outcomes, |j〉, and is equivalent to

sending ρ through a channel in the form ρ 7→
∑
j pj

ΠjρΠj
Tr(Πjρ)

⊗ |j〉〈j|.

The most general quantum measurement can be expressed as a Positive Operator Valued

Measure (POVM), which is a complete set of nonnegative operators Λj � 0 such that∑
j Λj = I. This yields the jth measurement outcome with probability Tr (Λjρ). From

Naimark’s Dilation Theorem [5], a POVM applied to a quantum state can be represented

by isometrically embedding the state into a higher-dimensional space and performing

a projective measurement. Repeated measurement with a POVM will not necessarily

yield the same outcome as in the case of a noiseless projective measurement.

III. Quantum Entropy and Quantum Data Compression

A. Quantum Entropy Definitions

The notion of entropy from classical information theory generalizes to the realm of

quantum information theory. Given a state ρA ∈ HA, we define the quantum entropy,

or the von Neumann entropy (denoted H(ρA) or H(A)ρ) as the quantity

H(ρA) := −Tr (ρA log ρA) , (3)

where log ρA is the base-2 operator logarithm of ρA. If ρA has a spectral decomposition∑
x px|x〉〈x|A where {|x〉A} is an orthonormal basis for HA, then H(ρA) reduces to the

classical entropy of the probability distribution {px}:

H(ρA) = H({px}) :=
∑
x

−px log px. (4)

From this observation, it is clear that H(ρA) achieves its minimum value of 0 when ρA is

a pure state, and its maximum value of log(dim(HA)) when ρA is the maximally mixed

state πA := 1
d

∑
x |x〉〈x|A = 1

dI (where d = dim(HA) and {|x〉A} is an orthonormal

basis).

It is important to note several properties of this quantity. The von Neumann entropy

is concave in the state ρA, and H(UρAU
∗) = H(ρA) for any isometry U . Furthermore,

H(ρA) is continuous with respect to the trace distance: ||ρ−σ||1 := Tr
(√

(ρ− σ)∗(ρ− σ)
)

,

a result following from the Fannes-Audenaert Inequality (or alternatively, the AFW in-

equality) [1,6,7]. For a pure state ρAB = |φ〉〈φ|AB ∈ HA ⊗HB , the marginal entropies

of the local operators are equal: H(ρA) = H(ρB). (This follows from expressing ρA and

ρB in terms of the terms of the components of the Schmidt decomposition of |φ〉AB).

The entropy is additive over simple product states: H(ρA ⊗ σB) = H(ρA) + H(σB).

For a classical-quantum state of the form ρXB =
∑
x px|x〉〈x|X ⊗ ρxB (where {|x〉} is an

orthonormal basis for HX), we have

H(XB)ρ = H(X) +
∑
x

pxH(ρxB) (5)
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where H(X) is the classical entropy of the ensemble {x, px}. Note that classical-

quantum states arise when we couple a quantum state ρ (in system B) and a device

used to make a classical measurement of it (in system X). The post-measurement state

of the two systems will be a classical-quantum state of the above form, where px is the

probability of observing the xth measurement outcome, and ρxB is the post-measurement

state into which ρB collapses.

For a bipartite state ρAB ∈ HA ⊗ HB , we define the conditional quantum entropy as

the quantity H(A|B)ρ := H(AB)ρ − H(B)ρ. As in the classical case, conditioning

reduces entropy: H(A)ρ ≥ H(A|B)ρ. In the quantum case, however, the conditional

entropy H(A|B)ρ can take on negative values. The intuition for this is that in the

quantum setting, we can actually be more certain about the entire AB system than

just one of its parts. In light of this, we also define the coherent quantum information:

I(A〉B)ρ := −H(A|B)ρ. If |ψ〉ABE ∈ HA ⊗ HB ⊗ HE is a purification for ρAB , then

using the fact that the local operators ρB and ρAE must have equal entropies, we can

verify that I(A〉B)ρ = H(A|E)ρ.

One final quantity of interest is the quantum relative entropy between a density operator

ρ and a positive semi-definite operator σ over H, defined as

D(ρ||σ) =

Tr (ρ[log ρ− log σ]) if supp(ρ) ⊆ supp(σ)

+∞ otherwise
. (6)

B. Quantum Data Compression

We can formalize the notion of entropy being the information content of a quantum

state by considering quantum data compression, also called Schumacher Compression.

Suppose we draw pure states from an ensemble {px, |ψx〉}, forming the product state

|ψxn〉An = |ψx1
〉A1
⊗ . . .⊗|ψxn〉An with density operator ρ⊗n, where ρ =

∑
x px|ψx〉〈ψx|.

Let (|ϕρ〉RA)⊗n be a purification for ρ⊗n, with density operator (ϕρRA)⊗n. A compres-

sion scheme involves an encoding channel EAn→W and a decoding channel DW→Ân which

produces an estimate of the original state. We will define quantum channels formally in

Section IV-C, but for now we may take a quantum channel as a map between quantum

states of different systems—for example, EAn→W maps quantum states in HAn to the

intermediate system HW . If HW has size 2nR, we say the scheme compression rate

R. It has ε-error if 1
2 ||(ϕ

ρ
RA)⊗n − (DW→Ân ◦ EAn→W )((ϕρRA)⊗n)||1 ≤ ε. We call the

scheme a (n,R, ε) quantum compression code, and say that a rate R is achievable if for

all δ, ε > 0, and for n large enough, there is a (n,R+ δ, ε) code.

It turns out that the smallest achievable compression rate is precisely equal to the

quantum entropy of the original state:

Theorem 3 (Quantum Data Compression Theorem [8]). If a pure-state quantum in-

formation source has density operator ρA, the quantum data compression limit (the

infimum of achievable rates R) is equal to H(A)ρ.
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This result due to Schumacher [8] can be proven using the quantum analog of typical sets

and Shannon-like arguments. The result indicates that a quantum state (ρA)⊗n can be

losslessly encoded in a space HW of dimension 2nH(A)ρ , which can then be transmitted

to a receiver with nH(A)ρ noiseless qubit channel uses. In this sense, we justify the

notion of qubits as a fundamental unit of quantum information.

IV. Quantum Information and Quantum Channels

A. Definition of Quantum Mutual Information

Quantum mutual information is defined in terms of the quantum entropies introduced

earlier. The quantum mutual information is the quantity

I(A;B)ρ := H(A)ρ +H(B)ρ −H(AB)ρ. (7)

Similarly, the conditional quantum mutual information of a state ρABC ∈ HA⊗HB⊗HC
is

I(A;B|C)ρ = H(A|C)ρ +H(B|C)ρ −H(AB|C)ρ. (8)

The classical notion of Strong Subadditivity still holds for quantum states, which is

equivalent to

I(A;B|C)ρ ≥ 0. (9)

This follows from (and in fact is equivalent to) the non-obvious fact that quantum

relative entropy is monotonic with respect to quantum channels [9, 10]. Specifically,

given a density operator ρ and a positive semidefinite operator σ over HA, and a quan-

tum channel N which sends linear operators from HA to HB , we have the Uhlmann

inequality:

D(ρ||σ) ≥ D(N (ρ)||N (σ)). (10)

This monotonicity of quantum relative entropy also implies the quantum data processing

inequality: For σA′B′C = (NA→A′ ⊗MB→B′)(ρABC), we have

I(A;B|C)ρ ≥ I(A′;B′|C)σ. (11)

B. Accessible Information and Holevo Information

Suppose we wanted to use a quantum channel to transmit classical information. The

information would be encoded in the quantum states which are sent over the channel,

and at some point the receiver would have to perform a measurement (by applying a

POVM) to obtain a classical message. Suppose the sender encodes a classical message

ensemble {px, x} by transmitting the quantum states {ρx}, leading to the corresponding

ensemble of quantum states E = {px, ρx}. The obvious question then becomes how much

classical information we can obtain from a POVM. This leads to the notion of accessible

information:
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Definition 2 (Accessible Information). Suppose we have an ensemble of quantum states

E = {px, ρx} upon which we may perform a POVM {Λy}. The accessible information

Iacc(E) of E is the maximum mutual information between the classical random variables

X and Y , optimized over the choice of POVM: Iacc(E) = max{Λy} I(X;Y ).

The accessible information can be difficult to compute in general, but we can find a

simple upper bound in the Holevo Information:

Definition 3 (Holevo Information). Consider an ensemble of states E = {px, ρxB}, with

the expected density operator ρB = EX{ρxB} =
∑
x pxρ

x
B. The Holevo information of

the ensemble is defined as

χ(E) = H(ρB)−
∑
x

pxH(ρxB). (12)

If we consider the classical-quantum state σXB =
∑
x pX(x)|x〉〈x|X⊗ρxB , then the local

operator σB is precisely the expected density operator ρB in the above definition, so we

may write the Holevo information succinctly in the form χ(E) = I(X;B)σ.

Theorem 4 (Holevo Bound [11]). Given an ensemble of quantum states E = {px, ρx},
the Holevo Information is an upper bound on the accessible information: χ(E) ≥ Iacc(E).

This follows from the quantum data processing inequality. An interesting consequence

of this bound is the fact that if the elements of our ensemble ρx lie in a Hilbert space of

dimension 2n, we can obtain no more than n bits of classical information from performing

a POVM. In particular, if our quantum states are each represented by n qubits, we can

gain no more than n bits of classical information from them. This is rather surprising

considering that a qubit can take on a continuum of forms (see Sec. IV-D).

C. Definition of a Quantum Channel

We now formally introduce the notion of a quantum channel, which describes the phys-

ical transfer and evolution of quantum states and is the basis for using quantum states

to convey classical or quantum information. Let L(H) be the space of linear operators

on the Hilbert space H, and L(HA,HB) the space of linear maps from HA to HB .

We say that a map N : L(HA) → L(HB) is trace preserving if Tr (N (X)) = Tr (X)

for any X ∈ L(HA). The map N is positive if it takes positive semidefinite op-

erators to positive semidefinite operators, and completely positive if it satisfies that

IR ⊗ N : L(HR ⊗ HA) → L(HR ⊗ HB) is a positive map for a reference system R of

arbitrary size.

Definition 4. A quantum channel N : L(HA)→ L(HB) is a linear, completely positive,

trace-preserving map, corresponding to a quantum physical evolution.

To avoid ambiguity in a channel’s action, we will sometimes write NA→B to emphasize

that the channel sends a state in HA to one in HB . Given a bipartite state ρRA ∈
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HR ⊗ HA, we will write NA→B(ρRA) as shorthand for (IR ⊗ NA→B)(ρRA), where IR

indicates the identity map (channel) on linear operators over HR. The following gives

a very useful characterization of quantum channels:

Theorem 5 (Choi-Kraus Theorem). A map N : L(HA) → L(HB) is linear, com-

pletely positive, and trace-preserving if and only if N (XA) =
∑d−1
`=0 V`XAV

∗
` where

V` ∈ L(HA,HB) and
∑d−1
`=0 V

∗
` V` = IA. Here, d need not be any larger than dim(HA) ·

dim(HB).

The V` in the above theorem are called Kraus operators, and completely determine

the action of the quantum channel. The Choi-Kraus Theorem is a direct corollary of

Choi’s theorem on completely positive maps [12], which states that N is completely

positive if and only if its Choi operator (the matrix [N (|i〉〈j|A)] with respect to an or-

thonormal basis {|i〉A}) is positive semidefinite. The serial concatenation of two chan-

nels NHA→HB and MHB→HC with Kraus operators {Nk} and {Mk′} is the channel

MHA→HB ◦ NHB→HC with Kraus operators {Mk′ ·Nk}. The parallel concatenation of

channels NHA→HB and MHC→HD is the channel MHA→HB ⊗ NHB→HC with Kraus

operators {Mk′ ⊗Nk}.

Schrodinger’s Equation tells us that pure states evolve according to unitary processes. It

can therefore be useful to note that any quantum channel can be described by a unitary

map acting on a purification of a quantum state ρ. This gives rise to an isometry

U : HA → HB ⊗ HR such that TrHR (UXAU
∗) = N (XA). Here, HR is a reference

space of dimension at least the rank of the Choi operator. We call the isometry U an

isometric extension of N , and sometimes symbolize it as UNA→BR. One such isometric

extension is given by
∑
j Vj ⊗ |j〉R, where {Vj} is a set of Kraus operators for N

and {|j〉R} is an orthonormal basis for HR. If we consider the reference system as

starting in a default state |0〉〈0|R, we can describe N by a unitary extension U =

UNAR→BR such that TrHR (U(XA ⊗ |0〉〈0|R)U∗) = N (XA). Given the channel NA→B
with isometric extension U = UNA→BR, we call the corresponding channel N c

A→R(XA) :=

TrHB (UXAU
∗) the complementary channel to N .

D. A Variety of Quantum Channel Resources

Whereas classical channels are capable of transmitting only classical information, quan-

tum channels can transmit much more, including classical information, quantum in-

formation, entanglement, and private information (classical or quantum information to

which an eavesdropper can have no access). A unit resource of quantum communica-

tion is the ability to transmit or consume one unit of classical/quantum information or

entanglement. As such, we must quantify these units.

The most familiar of these is classical information, used to describe classical messages.

Classical information is measured in the usual classical bits. As we know, a bit takes

on a label of 0 or 1, and the information content of a classical message is essentially the

number of bits (the length of a binary word) needed to describe the message unambigu-

10



ously. Quantum information, on the other hand, is quantified in terms of qubits, which

are the quantum analogs of bits. A qubit is a pure state in a 2-dimensional Hilbert space

H2. We typically label the elements of an orthonormal basis for H2 as |0〉 and |1〉, so

that a qubit is described as a linear combination α|0〉+ β|1〉 with |α|2 + |β|2 = 1. Sim-

ilar to the classical case, in which a message is described by a probability distribution

on the message alphabet, a quantum message is described by an ensemble of quantum

states, which is a mixed state ρ. The quantum information of ρ, loosely speaking, is the

number of qubits needed to completely represent it. Just as classical information can be

measured by the classical entropy of a message, quantum information can be measured

by the quantum entropy of ρ.

The final resource that we wish to quantify is that of entanglement consumption. If a

sender Alice and a receiver Bob respectively possess quantum states ρA and ρB which are

entangled (possibly over a great physical distance), this entanglement can be exploited

to facilitate the rate at which information can be transferred between them. We quantify

entanglement in units of perfectly entangled qubits, which we call ebits. An ebit is a

quantum state of the form 1√
2
(|00〉AB + |11〉AB), where we have used the shorthand

|00〉AB to denote a quantum state of the form |0〉A ⊗ |0〉B , and similarly for |11〉AB .

We will discuss the process of converting arbitrary entangled states to ebits in Section

VII-A.

Following the convention of [1], we will use the notation [c→ c] to represent a single use

of a noiseless classical bit channel. This is a channel that transmits a single bit from the

sender Alice to the receiver Bob. Likewise, [q → q] will denote a single use of a noiseless

qubit channel, which is the quantum channel that maps α|0〉A+β|1〉A to α|0〉B+β|1〉B .

We will denote the consumption of an ebit by [qq]. We will explain what we mean by

ebit consumption in the next section. We consider [c → c], [q → q] and [qq] to be

our “unit resources” of communication because any amount of classical communication,

quantum communication, and entanglement consumption can be expressed in terms of

multiple uses of noiseless classical bit channels, noiseless qubit channels, and ebits.

V. Quantum Unit Resource Protocols and Unit Resource Inequalities

We can formulate the trade-off between different resources in communication as a kind

of algebra. We describe a unit resource communication protocol in the form of an

inequality which indicates the rate at which certain resources must be consumed to

produce others. For example, an inequality of the form C[c → c] + E[qq] ≥ Q[q → q],

where C, E, and Q are positive real numbers, would indicate a protocol in which C

uses of a noiseless classical bit channel and E shared ebits are consumed to simulate

Q uses of a noiseless qubit channel. We allow C, Q, and E to assume non-integer

values, in which case they correspond to the relative rates at which these resources are

used. If we allow negative coefficients, we can always express a protocol in the form

0 ≥ C[c→ c]+Q[q → q]+E[qq], where a negative coefficient indicates that a resource is

consumed and a positive coefficient indicates that a resource is produced or simulated.

11



We will now describe several fundamental protocols and their corresponding resource

inequalities.

A. Entanglement Distribution Protocol

Entanglement distribution [1] is a process by which one use of a noiseless qubit chan-

nel is used to produce one shared ebit between sender Alice and receiver Bob. This

corresponds to the resource inequality

[q → q] ≥ [qq]. (13)

As with most protocols, we will assume that any local resources required by Alice and

Bob are costless, and let Alice begin with two qubits labeled by A and A′ which she

prepares in the default state |0〉A|0〉A′ . We also assume that Alice is capable of applying

a Hadamard gate operation to a qubit, which is a fundamental quantum operation that

transforms the basis of the qubit via the map

|0〉 7→ |+〉 :=
|0〉+ |1〉√

2
,

|1〉 7→ |−〉 :=
|0〉 − |1〉√

2
. (14)

In general, a Hadamard gate can be performed without actually observing a qubit

because it is a linear action defined on the basis elements of our space. This can be

important since observing a qubit will collapse it to a single basis element, making it

useless for containing quantum information.

In our current situation, however, Alice only applies the Hadamard gate to the basis

state |0〉A, which induces the transformation |0〉A|0〉A′ 7→
(
|0〉A+|1〉A√

2

)
|0〉A′ . Alice then

performs a CNOT gate on the systems A and A′. This quantum gate acts on a pair of

qubits (called the “source” and “target” qubits), and induces the map |a, b〉 7→ |a, a⊕ b〉
where a, b ∈ {0, 1} (a the source and b the target) and ⊕ corresponds to mod-2 addition.

In this case, using the A system as the source and A′ as the target, Alice transforms

the state to |00〉AA′+|11〉AA′√
2

. Finally, Alice sends the A′ qubit to Bob using a single use

of a noiseless qubit channel, and resulting in an ebit shared between them in the form
|00〉AB+|11〉AB√

2
(where the A system is Alice’s share of the ebit, and the B system is

Bob’s).

B. Super-dense Coding Protocol

The super-dense coding protocol [13] consumes a single use of a noiseless qubit channel

and one shared ebit to simulate two uses of a classical bit channel, corresponding to the

resource inequality

[q → q] + [qq] ≥ 2[c→ c]. (15)

This is an interesting use of a quantum channel, since it suggests that if Alice and Bob

share stored entanglement upfront, and the cost of using a noiseless qubit channel is the
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same as that of a noiseless classical bit channel, then Alice can transmit twice as much

classical information to Bob in a given number of uses of the qubit channel as she can

in the same number of uses of the bit channel.

In order to understand super-dense coding, we first must define the Pauli operators

X and Z, which act on a qubit. X swaps the basis elements |0〉 and |1〉, while Z

swaps the alternative basis elements |+〉 and |−〉. We can express X and Z as matrices

with respect to the {|0〉, |1〉} basis as X =

[
0 1

1 0

]
and Z =

[
1 0

0 −1

]
. We can apply

combinations of these Pauli operators to the first qubit of an ebit to obtain the Bell

basis, an orthonormal basis for a two-qubit system:

|Φ+〉AB =
1√
2

(|00〉AB + |11〉AB)

|Ψ+〉AB = XA|Φ+〉AB =
1√
2

(|01〉AB + |10〉AB)

|Φ−〉AB = ZA|Φ+〉AB =
1√
2

(|00〉AB − |11〉AB)

|Ψ−〉AB = ZAXA|Φ+〉AB =
1√
2

(|01〉AB − |10〉AB). (16)

Super-dense coding proceeds as follows: Alice has a 2-bit message (one of four messages),

and selects one of the four Pauli operators WA ∈ {IA, XA, ZA, XAZA} accordingly. She

applies the operator to her share of an ebit, |Φ+〉AB , producing a Bell basis element

WA|Φ+〉. She then transfers her share of the ebit (one qubit) to Bob with a single use

of a noiseless qubit channel. Bob now has the full state WA|Φ+〉, and measures it in

the Bell basis (an orthogonal projection) to determine Alice’s message.

C. Teleportation Protocol

The quantum teleportation protocol [14] is something of a dual to super-dense coding

in which the sender utilizes two uses of a classical bit channel along with a single ebit

to simulate one use of a noiseless qubit channel:

2[c→ c] + [qq] ≥ [q → q]. (17)

In teleportation, Alice wants to send a qubit |ψ〉A′ to Bob. Alice and Bob share an ebit

|Φ+〉AB . With some simple algebra, we can re-express the product state |ψ〉A′ |Φ+〉AB
in the equivalent form

1

2
(|Φ+〉A′A|ψ〉B + |Φ−〉A′AZB |ψ〉B + |Ψ+〉A′AXB |ψ〉B + |Ψ−〉A′AXBZB |ψ〉B), (18)

where XB , ZB are Pauli operators acting on Bob’s state.

Alice performs a measurement on her two-qubit state A′A in the Bell basis, and sends a

2-bit classical message to Bob to tell him which of the four outcomes she observes. Bob

then knows his state is in the form |ψ〉B , ZB |ψ〉B , XB |ψ〉B or XBZB |ψ〉B depending on
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what Alice tells him. By applying the appropriate inverse Pauli operator, Bob puts his

qubit in the state |ψ〉B , effectively “teleporting” Alice’s original qubit to Bob (note that

Alice’s original qubit collapsed during her Bell basis measurement, so that the quantum

“no-cloning” theorem is not violated).

D. The Unit Resource Capacity Region

It is natural to ask whether we can completely characterize the trade-off region of the

three unit resources [c → c], [q → q], and [qq]. In other words, if we express all unit

resource inequalities in the form 0 ≥ C[c → c] + Q[q → q] + E[qq], what is the set

of all triples (C,Q,E) corresponding to achievable protocols involving only the unit

resources? We call the closure of this set the Unit Resource Capacity Region, denoted

CU .

The three protocols we have considered—entanglement distribution, super-dense cod-

ing, and teleportation—correspond to the ordered triples (0,−1, 1), (2,−1,−1), and

(−2, 1,−1) respectively. Timesharing between these protocols, we can achieve any point

in the convex cone of these three ordered triples. It turns out that this yields the entire

Unit Resource Capacity Region:

Theorem 6 (Unit Resource Capacity Region [15]). The Unit Resource Capacity Re-

gion, CU , is precisely the convex cone of the (C,Q,E) triples (0,−1, 1), (2,−1,−1), and

(−2, 1,−1) corresponding to entanglement distribution, super-dense coding, and telepor-

tation respectively.

Shortly, we will discuss communication protocols which involve the use of an arbitrary

quantum channel N . We will see that when we allow ourselves the additional resource

of uses of N , we may be able to produce values of C, Q, and E which fall outside the

region CU .

VI. Four Different Quantum Channel Capacities

We are now ready to discuss the rate at which we can reliably communicate information

over a quantum channel. Whereas in the classical case we have a single notion of channel

capacity (the maximum rate at which we can communicate classical bits reliably), a

quantum channel has four different capacities associated with it:

1. Classical Capacity C(N ): The best rate at which a sender can transmit classical

information (bits) over the channel.

2. Entanglement-Assisted Classical Capacity CE(N ): The best rate at which

a sender can transmit classical information when the sender and receiver share an

arbitrary number of quantum states (ebits).

3. Private Classical Capacity P (N ): The best rate for sending classical informa-
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tion to achieve high fidelity between sender and receiver without leaking informa-

tion to the environment.

4. Quantum Capacity Q(N ): The best rate for sending quantum information

(qubits) over the channel.

Unlike classical channels, for which classical Shannon theory completely describes the

channel capacity in terms of the maximum mutual information between sent and re-

ceived messages, the four quantum channel capacities remain to be fully characterized.

In fact, only the entanglement-assisted capacity CE(N ) has been successfully expressed

in a simple form for general channels. Much has been learned about all four capaci-

ties, however, using the quantum analog of Shannon theory. An excellent reference on

“Quantum Shannon Theory” is provided by Wilde’s book [1].

We must emphasize that the results in this section typically assume that our sender

Alice and receiver Bob have access to any theoretically realizable quantum resources. In

particular, Alice can transmit information encoded in arbitrary quantum states, and Bob

can apply an arbitrary POVM to measure the channel output. As such, these capacities

will be upper bounds the maximal rates of communication that can be achieved using

states and receivers which can be feasibly implemented in the lab. In Section VIII-C we

will describe some of the capacities of free-space optical communication when restricted

to using common optical states. These are different from the ultimate capacity of the

free-space optical channel, described in Section VIII-B.

A. Classical Capacity

Let us formally define the classical capacity of a quantum channel, for which we must

first describe the classical communication information processing task. The sender Alice

has a message m ∈ {1, ..., |M|} represented by random variable M . She prepares a state

ρmA′n which she sends to Bob over n parallel uses of the channel N . Bob receives the

state N⊗n(ρmA′n), which he measures with a POVM {Λm}. He estimates Alice’s original

message as a random variable M ′. The probability of a correct estimate is P (M ′ =

m|M = m) = Tr (ΛmN⊗n(ρmA′n)) (not to be confused with the above notation for the

Private Classical Capacity of a channel), and the error probability for message m is

pe(m) = 1−P (M ′ = m|M = m) = Tr ((I − Λm)N⊗n(ρmA′n)). We set p∗e = maxm pe(m)

and say that the code has error less than ε ∈ [0, 1] if p∗e ≤ ε. The classical communication

rate is C := 1
n log |M|, and we call this an (n,C, ε) code. We say that a rate C is

achievable for N if there is an (n,C − δ, ε) code for all δ > 0, ε ∈ [0, 1], and large

enough n. Expressed in the language of resource inequalities, the classical capacity of

N is the largest value of C such that there is an achievable protocol corresponding to

〈N〉 ≥ C[c→ c], where 〈N〉 represents the resource of a single use of the noisy quantum

channel N .

Holevo [16] and (separately) Schumacher and Westmoreland [17] proved that the clas-

sical capacity can be described in terms of the Holevo information of N :
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Definition 5 (Holevo Information of a Channel). Suppose Alice draws states from an

ensemble {px, ρxA}, with the corresponding classical-quantum state ρXA =
∑
x px|x〉〈x|⊗

ρxA. She sends the A subsystem through the quantum channel NA→B, yielding the state

ρXB =
∑
x px|x〉〈x| ⊗ NA→B(ρxA). If we define the states σxB := NA→B(ρ§A), then the

Holevo Information of N is

χ(N ) := max
ρXA

I(X;B)ρ (19)

= max
{px,ρxA}

[
H

(∑
x

pxσ
x
B

)
−
∑
x

pxH(σxB)

]
. (20)

The Classical Capacity Theorem (also called the “HSW” Theorem after Holevo, Schu-

macher, and Westmoreland [16, 17]) shows that by measuring all the channel outputs

collectively (i.e. exploiting entanglement of the output states), we can achieve the

Holevo information as a rate of classical communication.

Theorem 7 (Classical Capacity (HSW) Theorem). The Holevo information is an

achievable rate of classical communication over the quantum channel N : C(N ) ≥ χ(N ).

In fact, C(N ) is equal to the regularization of the Holevo information:

C(N ) = χreg(N ) := lim
n→∞

1

n
χ(N⊗n). (21)

The achievability of χ(N ) as a rate of classical communication can be proven using

what is known as the Packing Lemma [1, 18], a useful tool for showing the existence of

a set of quantum states and a corresponding POVM which yield low estimation error.

Essentially, given an ensemble of states {px, ρxA} which achieves the Holevo information

in Definition 7, sequences of states drawn from this ensemble can be concatenated

into product states which serve as codewords. The argument follows a Shannon-style

approach [1].

For a long time, it was an open question whether χ(N ) was additive over parallel

concatenations of channels. That is, does χ(M ⊗ N ) = χ(M) + χ(N )? If so, this

would imply that the classical capacity can be expressed as the “single-letter” form

C(N ) = χ(N ). Note that for classical channels, this is indeed the case: the maximal

mutual information between input and output messages is additive over parallel uses

of two channels, which is why classical capacity over classical channels has a single-

letter form. For quantum channels, however, this turns out to be false. Hastings [19]

demonstrated the existence of channels M and N for which the Holevo information

is strictly superadditive: χ(M⊗N ) > χ(M) + χ(N ). There are, however, particular

examples (the so-called “entanglement-breaking” channels [20]) for which the Holevo

information is additive over parallel channel uses, so for these we can indeed express

the classical capacity as χ(N ).

A further and perhaps more important question is whether the classical capacity C(N )

is itself additive over channels. C(N ) is additive over multiple copies of the same
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channel, since it follows from the regularization expression that

C(N⊗m) = lim
n→∞

1

n
χ(N⊗mn) = m ·

(
lim
n→∞

1

mn
χ(N⊗mn)

)
= m · C(N ). (22)

But for different channelsM and N , it is still unknown whether C(M⊗N ) = C(M) +

C(N ). Note that this is not prohibited by the nonadditivity of χ(N ).

B. Entanglement-Assisted Classical Communication

It stands to reason that we can boost the classical capacity of a quantum channel by

exploiting shared entanglement between sender and receiver. Holevo’s bound shows us

that using a noiseless qubit channel (through which Alice can transmit one qubit per

channel use to Bob), Bob can extract at most one bit of classical information for each

qubit that Alice sends. The super-dense coding protocol, however, shows that if Alice

and Bob share one ebit of entanglement, Bob can receive two bits per sent qubit. How

does this generalize to arbitrary channels?

The answer was provided by Bennett, Shor, Smolin, and Thapliyal [21] through the

Entanglement-Assisted Classical (EAC) Capacity Theorem, which characterizes the

highest achievable rate C of classical communication in the resource inequality 〈N〉 +

∞[qq] ≥ C[c → c]. This resource inequality asks for the number of transmissible bits

per channel use given infinite shared ebits.

First we describe the entanglement-assisted classical communication protocol and for-

mally define the entanglement-assisted classical capacity. Alice and Bob share copies of

a pure entangled state ΨTATB . Alice selects a message m ∈ M and uses an encoding

channel EmTA→A′n on her share of ΨTATB . She then sends the A′n system to Bob using n

independent uses of the noisy channel, producing the state NA′n→Bn(EmTA→A′n(ΨTATB )),

where NA′n→Bn = (NA′→B)⊗n. Bob then measures his composite system BnTB with

a POVM {ΛmBnTB} to produce an estimate m′ for m. Similar to the case of or-

dinary classical communication, the probability of error for message m is pe(m) =

Tr
(
(I − ΛmBnTB )NA′n→Bn(EmTA→A′n(ΨTATB ))

)
, and we set p∗e = maxm∈M pe(m). The

rate of communication is C = 1
n log |M|, and if p∗e ≤ ε we say this is an (n,C, ε)

entanglement-assisted classical code. A rate C is achievable if there is a (n,C − δ, ε)
entanglement-assisted classical code ∀ε ∈ (0, 1), δ > 0, and n large enough.

The Entanglement-Assisted Classical Capacity Theorem describes the highest rate of

classical communication given an arbitrary amount of shared entanglement between

Alice and Bob, which turns out to be equal to the mutual information of the quantum

channel :

Definition 6 (Mutual Information of a Quantum Channel). The mutual information

of a quantum channel NA′→B is the quantity I(N ) := maxρAA′ I(A;B)N (ρ), where

ρAB = NA′→B(ρAA′). In fact, by purifying ρAA′ and exploiting the quantum data-

processing inequality, it can be shown that it is enough to optimize over pure states
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ϕAA′ . Thus we may formally define I(N ) as

I(N ) := max
{ϕAA′ pure }

I(A;B)N (ϕ). (23)

I(NA→B) is a measure of the ability of the channel to preserve quantum correlations

between A and B. It turns out that, unlike Holevo information, the quantum channel

mutual information obeys additivity: I(M⊗N ) = I(M) + I(N ), a fact which follows

from strong subadditivity. This is what allows us to find a single-letter expression for

CE(N ).

Theorem 8 (Entanglement-Assisted Capacity (EAC) [21]). The entanglement-assisted

classical capacity is

CE(N ) = I(N ) = max
ϕAA′

I(A;B)ρ, (24)

where ϕAA′ is a pure bipartite state and ρAB = NA′→B(ϕAA′). Furthermore, for any

such states, 〈N〉 + H(A)ρ[qq] ≥ I(A;B)ρ[c → c] is an achievable protocol, so CE(N )

can be achieved with an entanglement consumption rate of H(A)ρ ebits per channel use

for the corresponding ρAB.

We will omit the details of the proof, except to mention that the achievability of such

a protocol can be shown by using a random coding argument and exploiting the afore-

mentioned Packing Lemma to prove the existence of an accurate decoding POVM [1].

Note that due to the single-letter additivity of I(N ), the entanglement-assisted capacity

CE(N ) is itself additive.

C. Private Classical Communication

A unique feature of quantum channels is the ability to transmit classical information

which is immune to eavesdropping, in the sense that the quantum mutual information

between the sent quantum states and an eavesdropper is small. The “eavesdropper”

can also be viewed as the environment of the quantum channel, which itself can interact

with the transmitted quantum states, inadvertently observing and transforming them.

In private classical communication, Alice selects a message m ∈ M, prepares a state

ρmA′n , and sends to Bob NA′n→Bn(ρmA′n) over n uses of the quantum channel NA′→B

(where NA′n→Bn := (NA′→B)⊗n). Bob then measures the received state using a POVM

{Λm} with error probability pe(m) = Tr ((I − Λm)NA′n→Bn(ρmA′n)), as before, and like-

wise the rate of the code is P = 1
n log |M|. But now, an eavesdropper Eve has access to

a channel N̂A′→E(σ) = TrB
(
UσU†

)
, where U = UNA′→BE is an isometric extension of

NA′→B (in keeping with the interpretation of Eve as the environment of the channel).

Define p∗e := max pe(m) and ωmEn := N̂A′n→En(ρmA′n). Then for ε > 0, we say that this

communication scheme is an (n, P, ε) code if p∗e ≤ ε and 1
2 ||ω

m
En − σEn ||1 ≤ ε for all

m, where σEn is a constant state. For ε small, the condition that 1
2 ||ω

m
En − σEn ||1 ≤ ε
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intuitively means that Eve cannot distinguish between the different states she intercepts.

Using the AFW inequality, it can be shown formally that this implies I(M ;En)ω is

small, so that Eve gains little information about Alice’s message.

In order to describe the private classical capacity in terms of resource inequalities, we

would have to introduce a new unit resource, that of a use of a “private” bit channel,

[c → c]priv, in which case P (N ) can be defined as the largest rate P such that 〈N〉 ≥
P [c→ c]priv. We chose not to include this in our discussion of the unit resource capacity

region in Section V for simplicity.

To find the maximum rate of private classical communication, we must define the private

information of a quantum channel:

Definition 7 (Private Information of a Quantum Channel). Let NA′→B be a quantum

channel with an isometric extension U = UNA′→BE. The private information of N is the

quantity

P (1)(N ) := max
ρXA′

[I(X;B)σ − I(X;E)σ] , (25)

where the maximization is taken over classical-quantum states ρXA′ =
∑
x px|x〉〈x|X ⊗

ρxA′ , and σXBE = UNA′→BE(ρXA′) :=
∑
x px|x〉〈x|X ⊗ UρxA′U†.

The private information of NA′→B is a measure of the classical correlations that Alice

(A′) can send to Bob (B) minus the classical correlations that are leaked to Eve (E,

the environment). P (N ) is a nonnegative quantity due to symmetry between B and

E. It was Devetak [22] and Cai-Winter-Young [23] who described the private classical

capacity P (N ) in terms of the private information:

Theorem 9 (Private Classical Capacity). Let N be a quantum channel. The private

information P (1)(N ) is an achievable rate of the private classical capacity: P (N ) ≥
P (1)(N ). In fact, the private classical capacity is equal to the regularization of the

private information:

P (N ) = P (1)
reg(N ) := lim

k→∞

1

k
P (1)(N⊗k). (26)

The achievability of P (N ) can be proven with a random coding argument. If the sender

Alice randomly selects a large enough set of codeword states, then the Packing Lemma

guarantees a POVM for receiver Bob to decode Alice’s message. Furthermore, the

“Covering Lemma” [1], a corollary of the operator Chernoff bound from [24], shows

the existence of a “fake” expected density operator which Eve cannot distinguish from

Alice’s true message state density operator.

For an arbitrary channel N = NA→B , neither P (1)(N ) nor P (N ) are additive in general

[25, 26]. One exception is in the case of degradable channels, defined by the property

that the complementary channel N c
A→E can be expressed as a series of channels DB→E ◦

NA→B . For degradable channels, the private information is additive, hence equal to its

regularization and to the private classical capacity [27].
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D. Quantum Capacity

In quantum communication, Alice begins with some shared entanglement with a refer-

ence system R in the form of some pure state ϕRA. She wishes to transfer the correlation

between her system and R to Bob, to produce a state ωRB which is close to ϕRA in

trace distance. To this end, Alice uses an encoding channel EA→A′n to prepare her state

for transmission to Bob via n uses of the quantum channel NA′→B′ (forming the chan-

nel NA′n→B′n = (NA′→B′)⊗n). Bob receives the state NA′n→B′n(EA→A′n(ϕRA)), which

he decodes with a channel DB′n→B to get ωRB := DB′n→B(NA′n→B′n(EA→A′n(ϕRA))).

The rate of this code is defined as Q = 1
n log dim(HA). If 1

2 ||ϕRA = ωRA||1 ≤ ε, and

we call it an (n,Q, ε) code. The quantum capacity Q(N ) is the supremum of all Q for

which there exists an (n,Q, ε) code for any ε > 0 and some n. It is the maximum Q for

which there is a protocol that achieves the resource inequality 〈N〉 ≥ Q[q → q].

We can express a channel’s quantum capacity in terms of its coherent information:

Definition 8 (Coherent Information of a Channel). The coherent information Q(1)(N )

of a channel N = NA′→B is the quantity

Q(1)(N ) := max
{ϕAA′ pure }

I(A〉B)ρ, (27)

where ρAB = NA′→B(ϕAA′).

If we take a unitary extension U = UNA′→BE for the channel, and set σABE = U(ϕAA′ ⊗
|0〉〈0|E)U†. Recall the fact that the marginal entropies of the associated local operators

are equal. Then we can write I(A〉B)σ = H(B)σ −H(AB)σ = H(B)σ −H(E)σ. This

allows us to express the coherent information of the channel as

Q(1)(N ) = max
{ϕAA′ pure }

H(B)σ −H(E)σ, (28)

where σABE is defined as above.

The coherent information is nonnegative, and with a little work, it can be shown that

it is upper-bounded by the private information: Q(1)(N ) ≤ P (1)(N ). Lloyd [28], Shor

[29], and Devetek [22] (separately) were able to prove that Q(1)(N ) is an achievable rate

for quantum communication:

Theorem 10 (Quantum Communication). The coherent information Q(1)(N ) is an

achievable rate for quantum communication over a quantum channel N , so we have

Q(N ) ≥ Q(1)(N ). In fact, the quantum capacity is equal to the regularization of the

channel’s coherent information:

Q(N ) = lim
k→∞

1

k
Q(1)(N⊗k). (29)

Neither the coherent information Q(1)(N ) [30] nor the quantum capacity Q(N ) [31]

is additive in general. One exception is in the case of degradable channels [32], for
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which it turns out that Q(1)(N ) = P (1)(N ) [27]. It is also additive for channels with

the “positive partial transpose” (PPT) property [33, 34]. These are channels which

send bipartite input states to bipartite output states whose local operators are positive

semidefinite. In fact, for PPT channels, it can actually be shown that Q(1)(N ) = 0.

VII. Some Achievable Quantum Resource Trade-offs

A. Entanglement Manipulation

Up to this point, we have quantified entanglement in terms of ebits. But what if a

sender Alice and receiver Bob each have a share of copies of some other pure bipartite

state, ψAB? It turns out that Alice and Bob can convert copies of ψAB to a certain

number of copies of any other entangled pure state φAB , a process called entanglement

manipulation. Here, Alice and Bob try to convert n copies of ψAB to m copies of

φAB using an LOCC channel Λ
(n)
AnBn→AmBm . “LOCC” stands for “local operations and

classical communication,” and indicates that the channel must be enacted by Alice and

Bob separately performing local quantum measurements with classical outputs which

they may communicate to each other. If we set ωAmBm := Λ
(n)
AnBn→AmBm(ψ⊗nAB), then

the protocol has ε-error if 1
2 ||ωAmBm−φ

⊗m
AB ||1 ≤ ε. We call this an (n,E, ε) protocol with

rate E = m/n. A rate E is achievable if for all δ, ε > 0, and large enough n, there exists

an (n,E, ε) protocol for entanglement manipulation, and we define the entanglement

manipulation limit E(ψ → φ) to be the supremum of all achievable rates.

This limit turns out to be equal to the ratio of the entropies of the two states:

Theorem 11 (Entanglement Manipulation). The entanglement manipulation limit for

ψAB → φAB is E(ψ → φ) =
H(A)ψ
H(A)φ

.

The proof relies on achieving this limit using a two-part process. The first step is to

perform “entanglement concentration” [35] to convert n copies of ψAB to approximately

nH(A)ψ ebits. The second is to perform “entanglement dilution,” a process which

converts these ebits to copies of φAB at a rate of H(A)φ ebits per copy [36,37]. It should

be noted that entanglement dilution requires some amount of classical communication

between Alice and Bob, but this amount is negligible (having a bit rate sublinear in

n) [38, 39]. The entanglement manipulation theorem justifies the idea of using ebits

to quantify entanglement. It establishes that the number of ebits of entanglement

associated to a state ψAB is approximately H(A)ψ, and these can be extracted via

entanglement concentration.

B. Entanglement-Assisted Quantum Communication

There are several other useful protocols worth noting. The first can be proven in a

similar fashion as the entanglement-assisted classical capacity theorem, and involves

exploiting the coherent communication identity [1, 40]. We will omit a discussion of

coherent quantum communication, but [1] provides a good reference on the subject.
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The result reveals an achievable protocol for communicating qubits by consuming ebits:

Theorem 12 (Entanglement-Assisted Quantum Communication). Given a quantum

channel N = NA′→B with isometric extension U = UNA′→BE, and a pure state |ϕ〉A′A,

the following is an achievable protocol:

〈N〉+
1

2
I(A;E)ϕ[qq] ≥ 1

2
I(A;B)ϕ[q → q], (30)

where |ϕ〉ABE := UNA′→BE |ϕ〉A′A. That is, asymptotically, for each channel use we can

consume 1
2I(A;E)ϕ ebits and communicate 1

2I(A;B)ϕ qubits.

An alternative protocol for entanglement-assisted quantum communication could be de-

rived, for instance, by starting with the entanglement-assisted classical communication

protocol to consume ebits to communicate classical bits, and using teleportation to use

these bits to transmit qubits (at the cost of further ebit consumption). It can be ver-

ified, however, that this would require a greater rate of ebit consumption than that of

Theorem 12.

It is also worth noting that the achievability of the coherent information I(A〉B) as a rate

of quantum communication (Theorem 10) can be realized as a corollary of Theorem 12

by combining the above protocol with entanglement distribution at a rate of 1
2I(A;E)ρ

and noting that I(A〉B) can be equivalently expressed as 1
2 [I(A;B)− I(A;E)].

C. Noisy Super-dense Coding

Another protocol of note is noisy super-dense coding.

Theorem 13 (Noisy Super-Dense Coding). Suppose a sender Alice and a receiver Bob

share copies of a state ρAB ∈ HA ⊗HB. There is an achievable protocol for quantum-

assisted classical communication with a shared quantum state with inequality:

〈ρAB〉+H(A)ρ[q → q] ≥ I(A;B)ρ[c→ c]. (31)

Here, 〈ρAB〉 indicates consumption of a copy of ρAB.

When the state ρAB is a perfect ebit, this reduces to the usual super-dense coding. The

entanglement-assisted classical capacity theorem generalized super-dense coding, using

an arbitrary (noisy) quantum channel instead of a noiseless qubit channel. Noisy super-

dense coding is another generalization, which assumes entanglement in the form of a

noisy shared state ρAB as opposed to perfect ebits. Theorems 12 and 13 are corollaries

of the coherent communication identity and the results in [41] and [42].

D. Trade-Off Coding

The protocol from the entanglement-assisted classical capacity theorem reveals that

given a channel NA′→B , ebits can be consumed at a rate of H(A)ρ per channel use
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in order to convey the optimal I(A;B)ρ bits of classical information, where ρAB =

NA′→B(ϕAA′). Since maintaining and distributing entanglement can be costly, a natural

question to ask is at what rate classical information can be sent while consuming ebits

at a lower rate? Shor and Devetak [32, 43] attempted to answer this question in works

which were generalized by Hsieh and Wilde [44], who developed a technique aptly called

trade-off coding.

Theorem 14 (CE Trade-off Coding). The following corresponds to an achievable pro-

tocol for entanglement-assisted classical communication over a channel NA′→B:

〈N〉+H(A|X)ρ[qq] ≥ I(AX;B)ρ[c→ c], (32)

where ρXAB =
∑
x px|x〉〈x|X ⊗NA′→B(ϕxAA′), with the ϕxAA′ pure.

The abbreviation “CE” in “CE Trade-off Coding” indicates that the theorem addresses a

trade-off between the rate C of classical communication and the rate E of entanglement

consumption. When X is endowed with the trivial ensemble p0 = 1, we can see that the

above protocol collapses to that of entanglement-assisted classical communication from

Theorem 8. Theorem 14 can be proven by constructing a protocol in which Alice starts

with a high-dimensional quantum state and uses many entanglement-assisted classical

(EAC) codes to encode different parts of this state independently. Alice encodes into

the entire state a message to Bob which indicates how to find each of these EAC codes.

The Packing Lemma can be applied to guarantee the existence of such a scheme, as well

as a POVM which Bob can use to detect Alice’s message. Trade-off coding can achieve

rates of classical communication with lower rates of ebit consumption than time-sharing

between entanglement-assisted classical communication and regular (non-entanglement-

assisted) classical communication (from the HSW Theorem). In fact, time-sharing can

actually be realized as a special case of trade-off coding.

As a corollary of CE Trade-off Coding, we can derive the following family of achiev-

able protocols for trading off between rates of classical communication (C), quantum

communication (Q) and entanglement consumption (E) [44]:

Theorem 15 (CQE Trade-off Coding). Let N = NA′→B be a quantum channel with

isometric extension U = UNA′→BE. The following is an achievable protocol:

〈N〉+
1

2
I(A;E|X)ρ[qq] ≥

1

2
I(A;B|X)ρ[q → q] + I(X;B)ρ[c→ c], (33)

where ρXABE :=
∑
x pX(x)|x〉〈x|X ⊗ UϕxAA′U† and the ϕxAA′ are pure.

The CQE Trade-off Coding protocol is a particularly important result, for when com-

bined with teleportation, super-dense coding and entanglement distribution, it is suf-

ficient to achieve any task in dynamic quantum Shannon theory involving the noisy

channel N and the three unit resources, as shown by Hsieh and Wilde [15,44,45]:

Theorem 16 (Dynamic Capacity Region). Given a quantum channel N = NA′→B,

the following is an achievable set of rate-triples (C,Q,E) of classical communication,
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quantum communication, and entanglement consumption:

C + 2Q ≤ I(AX;B)σ, (34)

Q+ E ≤ I(A〉BX)σ, (35)

C +Q+ E ≤ I(X;B)σ + I(A〉BX)σ, (36)

where σ is a state of the form σAXB =
∑
x px|x〉〈x|X ⊗ NA′→B(φxAA′) for pure states

φxAA′ .

If we denote this region as C(1)
CQE,σ(N ), and set C(1)

CQE(N ) :=
⋃
σ C

(1)
CQE,σ(N ), then the

dynamic capacity region is the closure of its regularization: CCQE(N ) =
⋃∞
k=1

1
kC

(1)
CQE(N⊗k).

This is the generalization of the unit resource capacity region (Theorem 6) when the

sender and receiver have access to many independent uses of a noisy quantum channel

N . As before, given a triple (C,Q,E), a positive value for C, Q, or E indicates that

the corresponding resource is produced, whereas a negative value means the resource is

consumed.

VIII. Capacity of Optical Communications

Our next focus will be to examine the dynamic capacity region in the regime of optical

communications.

A. Quantum Optical States

We begin with a necessary review of the basics of optical quantum states, which arise

from quantizing the electromagnetic field. They live in bosonic fields which can be

quantized similarly to the quantum harmonic oscillator. Optical states travel in spa-

tial modes which are either transverse or longitudinal to their direction of propagation.

Orthogonal transverse modes can be perfectly distinguished by a receiver, so each trans-

verse mode corresponds to a single communication channel.

For each mode in a bosonic field, we have an associated operator, â, referred to as

the “destruction” or “annihilation” operator. Its conjugate â† is called the “creation”

operator. We can decompose â into its real and imaginary parts: â = â1 + jâ2, where

â1 = 1√
2
(â + â†) and â2 = j√

2
(â − â†). We call â1 and â2 the real and imaginary

quadrature operators, which are Hermitian observables. The annihilation and creation

operators satisfy the fundamental commutation relation [â, â†] = 1, and the quadratures

satisfy [â1, â2] = j
2 . From the Heisenberg Uncertainty Principle, this implies that for

any quantum state |ψ〉, we have 〈∆â2
1〉〈∆â2

2〉 ≥ 1/16. Here, following convention, we

define for an operator Â and a state |ψ〉 the expected value 〈Â〉 = 〈ψ|Â|ψ〉 and variance

〈∆Â〉 = 〈Â−〈Â〉〉. States whose quadrature components achieve the lower bound in the
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Heisenberg Uncertainty Principle are called quadrature minimum-uncertainty states, or

minimum uncertainty product (MUP) states.

In a closed system, the annihilation operator evolves as a function of time, â(t), which

is governed by the Heisenberg Equation of Motion: j~dâ(t)
dt = [â(t), Ĥ] = ~ωâ(t), where

ω is the frequency of the mode and Ĥ is the Hamiltonian of the system, an observable

representing the system’s energy. It follows that â(t) = âe−jωt and Ĥ = ~ω[â†â+1/2] =

~ω[â2
1(t) + â2

2(t)].

1. Number States

The product N̂ := â†â appearing in the Hamiltonian is called the “number” operator, so

named because it has an orthogonal set of eigenvectors {|n〉} indexed by the nonnegative

integers n ≥ 0, where N̂ |n〉 = n|n〉. These discrete eigenvalues correspond to discrete

energy levels of the Hamiltonian, which in turn correspond to the number of photons in

the state. We call these Fock states, or simply number states. The number states form

a complete basis (I =
∑∞
n=0 |n〉〈n|), and each state |n〉 contains exactly n photons. We

call the state |0〉 the vacuum state, as it contains no photons. The annihilation and

creation operators act respectively on number states as

â|n〉 =
√
n|n− 1〉 (and â|0〉 = |0〉), (37)

â†|n〉 =
√
n+ 1|n+ 1〉, (38)

which explains where these operators get their names. With respect to a number state

|n〉, the quadrature components have mean 〈â1〉 = 〈â2〉 = 0 and variance 〈∆â1〉 =

〈∆â2〉 = 2n+1
4 , so |n〉 is only a quadrature minimum-uncertainty state when n = 0.

2. Coherent States

Another important state is called a coherent state |α〉, which is an eigenvector of the

annihilation operator: â|α〉 = α|α〉. There is a coherent state for every complex number

α ∈ C, and expressed in the basis of number states we have

|α〉 =

∞∑
n=0

αne−|α|
2/2

√
n!

|n〉. (39)

Coherent states are not orthogonal, so they cannot be unambiguously distinguished

with a quantum measurement. But they are a complete set since they resolve the

identity operator: I =
∫
d2α
π |α〉〈α|. As a result, we may write â =

∫
d2α
π α|α〉〈α|. The

probability of observing n photons in the state |α〉 by measuring N̂ is |α|
2n

n! e−|α|
2

, which

is a Poisson distribution with mean and variance equal to |α|. With respect to |α〉
where α = α1 + jα2, the quadrature components have means 〈â1〉 = α1 and 〈â2〉 = α2,

and variances 〈∆â1〉 = 〈∆â2〉 = 1
4 . Thus, coherent states are quadrature minimum-

uncertainty states.

The vacuum state is actually both a number state and a coherent state, so there is

no ambiguity in writing it as |0〉. Any coherent state can be realized by applying a
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displacement operator

D(â, α) = exp(αâ† − α∗â) (40)

to the vacuum state:

|α〉 = D(â, α)|0〉. (41)

3. Squeezed States

One other important class of states is that of squeezed states. If we define the squeeze

operator

Ŝ(r, φ) = exp

(
1

2
r(â2e−2jφ − â†2e2jφ)

)
, (42)

then a quadrature-squeezed state is a state of the form

|α〉(r,φ) = D(â, α)Ŝ(r, φ)|0〉. (43)

We may set φ = 0 without loss of generality by choosing the phase of our optical

frequency appropriately. With respect to a squeezed state |α〉(r,φ), where α = α1 +

jα2, the means of the quadratures are 〈â1〉 = α1 and 〈â2〉 = α2, and their variances

are 〈∆â1〉 = 1
4e
−2r and 〈∆â2〉 = 1

4e
2r. These form all of the quadrature minimum-

uncertainty states, with coherent states arising as a subset of the squeezed states when

r = 0. The term “squeezed” indicates that we have reduced the variance in one of the

quadratures at the cost of increasing the variance in the other. This could allow us to

modulate information in the squeezed quadrature.

B. Free-space Optical Communication: The Lossy Bosonic Channel

Free-space optical communication is modeled by the lossy bosonic channel which, in

its most general form, acts on input quantum states as well as the environment. To

describe this channel for a single mode, we let â be the input annihilation operator for

the sender, and ê the input annihilation operator of the environment. The lossy bosonic

channel transforms these operators as

â→ √η â+
√

1− η ê

ê→ −
√

1− η â+
√
η ê. (44)

The constant η ∈ [0, 1] is called the transmissivity, and loosely corresponds to the

fraction of the sender’s input photons which reach the receiver. We obtain a Kraus

map N for this channel by tracing out the environment. It acts on coherent states

by attenuating them: |α〉 7→ √η|α〉. When the input environment modes are initially

prepared in the vacuum state, we call this a pure loss channel, and we refer to it as a

lossless bosonic channel when η = 1.
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1. Classical Capacity

The classical capacity of the single-mode, single-frequency lossless bosonic channel was

studied in [46,47]. For classical information transfer, we assume that we transmit states

ρθ with a probability distribution P (dθ), resulting in the expected density operator

ρ =
∫
ρθP (dθ). The states are measured at the receiver with a POVM Λ(x), where

Λ(x) � 0, ∀x, and
∫

Λ(x)dx = I. Let X be the random variable associated to the

classical outcome of the POVM measurement. Yuen and Ozawa [46] proved that the

mutual information between the (classical) random variables θ and X is bounded as

I(θ;X) ≤ H(ρ)−
∫
H(ρθ)P (dθ). (45)

The proof relied on the Uhlmann inequality D(N (σ1)||N (σ2)) ≤ D(σ1||σ2), applied to

the map N (σ) = Tr (Λ(dx)σ). For a fixed energy constraint
∫

Tr
(
â†âρθ

)
P (dθ) ≤ N ,

the right-hand side of (45) is maximized by choosing the alphabet of θ to be the natural

numbers and the states ρn = |n〉〈n| with the probability distribution P (n) = Nn(1 +

N)−(n+1). Note that H(ρn) = 0 for each n. Then, choosing the POVM {Λ(n)} to be

that given by measuring the number operator N̂ = â†â =
∑∞
n=0 n|n〉〈n|, the mutual

information I(θ;X) can be shown to be equal to this upper bound, which is therefore

the capacity. A direct calculation gives that the capacity of the lossless bosonic channel

with energy limit N is given by C(N) = g(N), where g(x) is the function

g(x) := (x+ 1) log2(x+ 1)− x log2 x. (46)

g(N) is the von Neumann entropy of the expected density operator

ρ =

∞∑
n=0

Nn

(N + 1)n+1
|n〉〈n|, (47)

which is called a thermal state with mean photon number N .

Giovannetti et al. [48] were able to generalize this result to arbitrary lossy bosonic

channels. We denote a single-mode channel as N , and if we allow ourselves n successive

channel uses, we effectively form the channel N⊗n. In the case of multimode channels,

we may symbolize the channel corresponding to the kth mode as Nk (which may be

comprised of successive channel uses as above), and denote the full channel as
⊗

kNk.

If ωk and Nk are the frequency and average photon number of the kth mode, then we

assume an energy constraint of the form
∑
k ~ωkNk = E.

From the HSW theorem, the capacity for the single-mode channel is C = supn
Cn
n where,

like before,

Cn := max
{P (θ),ρθ}

H(σ)−
∫
H(σθ)P (θ)dθ, (48)

where ρθ ∈ H⊗n, σθ = N⊗n(ρθ), P (θ) is a probability density function, and σ =∫
σθP (θ)dθ. [48] showed that it is possible to achieve C as the Holevo information of an

ensemble of states with just n = 1 parallel channel uses. A capacity-achieving ensemble
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is shown to be Gaussian mixture of coherent states in each mode. In mode k, we select

the alphabet of θ to be the complex numbers, and choose an ensemble of the form

{Pk(α), |α〉k}, α ∈ C, where

Pk(α) =
1

πNk
exp[−|α|2/Nk]. (49)

Under these ensembles, the input state to the entire channel becomes
⊗

k

∫
|α〉〈α|kPk(α)d2α.

The capacity achieved using this scheme is g(ηkNk) for each mode, where g(x) is the

function from (46), and for the entire channel
⊗

kNk the capacity becomes
∑
k g(ηkNk).

Thus, the maximum capacity achievable is

C = max
{Nk}

∑
k

g(ηkNk), (50)

where the maximization is with respect to photon numbers Nk which satisfy the energy

constraint. [48] actually shows that Equation (50) is an upper bound on Cn
n for all n,

which implies that the capacity can be achieved by taking n = 1, i.e. the capacity is

single-letter. The above-mentioned capacity-achieving input state does not require en-

tanglement between different modes. Note that the proof of the HSW theorem involves

forming codewords from sequences of states drawn from the ensemble {Pk(α), |α〉k}, so

it is possible that exploiting entanglement at the sender’s end can have benefits such as

reducing the error probability for finite-length block codes.

2. Entanglement-Assisted Classical Capacity

Giovannetti et al. characterized the entanglement-assisted classical capacity of the lossy

bosonic channel in [49]. For a single-mode lossy bosonic channel N with transmissivity

η and average photon number N , this capacity turns out to be

CE(N ) = g(ηN) + g(N)− g((1− η)N) bits per channel use. (51)

Contrast this to the classical capacity of C(N ) = g(ηN) bits per channel use. The

entanglement-assisted classical capacity can be achieved by selecting coherent states

randomly from the same ensemble {P (α), |α〉} as in the classical-capacity-achieving case,

where P (α) is defined as in (49). For a multimode channel
⊗

kNk, with transmissivities

{ηk}, frequencies ωk, and average photon numbers Nk which must satisfy
∑
k ~ωkNk =

E, the entanglement-assisted classical capacity of the resulting channel will be

CE (⊗kNk) = max
{Nk}

∑
k

g(ηkNk) + g(Nk)− g((1− ηk)Nk). (52)

Figure 1 illustrates the capacity gain from using entanglement-assistance over the single-

mode lossy bosonic channel. The plots show trade-off curves for the maximum number

of classical bits which can be sent per photon versus per mode for transmissivities

η = 1 and η = 3/4. As the we can see from the plots, the maximum improvement we

can attain in dimensional information efficiency while maintaining a constant photon

information efficiency by using entanglement assistance depends largely on the value of

η. The same is true if we consider the improvement in photon information efficiency at

a fixed dimensional information efficiency.
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Figure 1. The improvement in classical capacity using entanglement-assistance for the single-mode

bosonic channel with transmissivity η, where η = 1 in 1(a) and η = 3
4

in 1(b) . Dimensional information

efficiency is equivalent to the capacity per channel use, and photon information efficiency is this

capacity divided by the average number of photons per mode, N .
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3. Quantum Capacity

The foundations for proving the quantum capacity of the lossy bosonic channel were

set in [50], and solidified in [51, 52]. Perhaps unsurprisingly, for a single-mode channel

N with transmissivity η and average photon number N , the quantum capacity has a

form similar to those of the classical and entanglement-assisted classical capacities. The

quantum capacity is

Q(N ) = g(ηN)− g((1− η)N). (53)

The results of [49] and [53] further develop this result by finding the entanglement-

assisted quantum capacity:

QE(N ) =
1

2
[g(ηN) + g(N)− g((1− η)N)]. (54)

Both the quantum and entanglement-assisted quantum capacities can be achieved by

generating random quantum codes from a thermal state distribution as in the expected

density operator of Equation (47).

4. The Dynamic Capacity Region

To conclude, we discuss the dynamic capacity region of the lossy bosonic channel—

Equations (34), (35), and (36) of Theorem 16. This region was characterized in [53],

which found that for a channel with transmissivity η and a mean photon number of NS ,

these three equations take the form:

C + 2Q ≤ g(λNS) + g(ηNS)− g((1− η)λNS), (55)

Q+ E ≤ g(ηλNS)− g((1− η)λNS), (56)

C +Q+ E ≤ g(ηNS)− g((1− η)λNS), (57)

which is a family of achievable regions of rate-triples (C,Q,E) parametrized by λ ∈ [0, 1].

Each such region comes from employing a coding ensemble of states constructed from

displacements of the two-mode squeezed vacuum state:

|ψTMS〉AA′ :=

∞∑
n=0

√
(λNS)n

(λNS + 1)n+1
|n〉A|n〉A′ . (58)

The ensemble consists of sending the state D(â′, α)|ψTMS〉 with probability

pα =
1

π(1− λ)NS
exp

(
−|α|2

(1− λ)NS

)
, (59)

where â′ is the annihilation operator of the A′ system and D(â′, α) is the displace-

ment operator from Equation (40). In the language of Theorem 16, the states are now

parametrized by the complex number α, with “px” becoming “pα” and “φxAA′” becoming

“D(â′, α)|ψTMS〉AA′ .”
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When we take the parameter λ = 0, the ensemble becomes {p(α), |0〉A ⊗ |α〉A′}, the

Gaussian mixture of coherent states which achieves the classical capacity of the lossy

bosonic channel as per [48]. When λ = 1, we recover the thermal state distribution

which achieves the quantum capacity of the channel. This reflects the nature of the

protocol constructed in [53] to achieve the dynamic capacity region. Loosely speaking,

λ represents the fraction of photons dedicated to the “quantum” part of the code.

Figure 2 illustrates the trade-off between the rates of entanglement consumption E

and classical communication C implied by Equations (55), (56), and (57). The fact

that C is a concave function of E shows that we can outperform timesharing between

two protocols for consuming ebits to communicate classical bits. It also suggests that

given a fixed entanglement budget of Ne ebits for a given number n of channel uses,

a strategy for maximizing the number of bits sent would amount to using the same

number of ebits in each channel use—that is, consume Ne/n ebits per channel use. If,

however, the demand for classical information is lower at a particular channel use, we

can consume a smaller number of ebits to send the required number of bits. In fact, if we

can afford a high enough mean photon number NS , we can actually generate new ebits

of entanglement between the sender and receiver, which we can use in a later channel

use should we need to communicate at a higher classical capacity. If we consider the

cumulative number of ebits at our disposal as an “entanglement battery,” this setup

reflects a power network problem.

C. Approaching Capacity in Practice

We now discuss how high a capacity we can achieve on the bosonic channel using con-

ventional methods. We will restrict our attention to the case of perfect transmissivity:

η = 1. Practical methods for communication over a single transverse mode typically

involve selecting a corresponding set of orthogonal longitudinal modes as well as a set

of quantum states to transmit over each mode. The overall quantum state over a time

interval will be the product state of the quantum states for each mode. Examples in-

clude pulse position modulation (PPM), in which the orthogonal modes are disjoint

pulses in time, and frequency multiplexing, in which the modes correspond to dividing

the available bandwidth into disjoint frequency bins.

1. The Number State Channel

Let us first examine communicating over one such bin using Fock states—the narrow-

band single number-state channel. Here, information is modulated in the form of number

states |n〉, and an ideal photodetector is used at the receiver to count the number of

photons in each orthogonal mode. We communicate at an operating frequency f and

a bandwidth B << f , and we model the channel as having thermal noise: For any

channel use, the photodetector could falsely detect an extra k photons with probability

q(k) = 1
1+n̄T

(
n̄T

1+n̄T

)k
, where n̄T = 1

ehf/kBT−1
with kB the Boltzman constant and T

the temperature. If we are allowed an average photon number n̄ :=
∑
n pnn for our
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Figure 2. The optimal trade-off between the rate of entanglement consumption (E) and classical

communication (C) over the lossy bosonic channel with transmissivity η ranging between .5 and 1.

Negative values of entanglement consumption indicate generated entanglement between sender and

receiver. Plots are shown for mean photon numbers of NS = 200 in (a) and NS = .005 in (b).
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number states, as determined by a power constraint P = Bhfn, then [47] shows that

the capacity-achieving input distribution is {pn, |n〉} with

pn =


1+n̄T

1+n̄+n̄T
, n = 0

n̄
(n̄+n̄T )(1+n̄+n̄T )

(
n̄+n̄T

1+n̄+n̄T

)n
, n > 0

. (60)

The capacity under this distribution becomes

CT = (n̄+ n̄T ) log2

(
1 +

1

n̄+ n̄T

)
+ log2

(
1 +

n̄

1 + n̄T

)
− n̄T log2

(
1 +

1

n̄T

)
. (61)

This is maximal when T = 0, in which case pn becomes a thermal distribution and the

capacity is simply

C0 = n̄ log2(1 + n̄−1) + log2(1 + n̄). (62)

The capacity per unit time is

C0 = BC0 = B[n̄ log2(1 + n̄−1) + log2(1 + n̄)]. (63)

[47] then considers the regime in which we fix the fractional bandwidth γ = B/f << 1,

and attempt to maximize C0 by varying f (which is equivalent to varying n̄ given a fixed

power P = Bhfn̄). The maximum capacity turns out to be Cmax = 2
√
γh/P bits per

second, which is achieved when n̄ = 1 (or equivalently, f =
√
P/γh). This corresponds

to Cmax/Bn̄ = 2 bits per photon. Finally, the results are generalized to the wideband

case by using frequency-multiplexing, in which the total bandwidth is divided into bins

of size b, with bin i centered at frequency fi and with average photon number n̄i. Our

power constraint now takes the form

P = b
∑
i

hfin̄i, (64)

and we maximize the overall information rate with respect to n̄i (as a function of

fi) subject to constant power P . The resulting wideband capacity is shown to be

CWB = π
ln 2

√
2P
3h bits/s, with the average photon numbers taking the form n̄i = 1

eβhfi−1

where β is determined from power constraint.

2. The Coherent State Channel

We next consider using coherent states for communication, modulating information in

both quadrature components and using heterodyne detection to measure both compo-

nents together. More formally, the coherent state ρ̂α = |α〉〈α| is transmitted accord-

ing to a probability density function p(α), leading to an expected density operator

ρ̂ =
∫
p(α)ρ̂αd

2α with respect to the measure d2α = dα1dα2 where α = α1 + jα2. Ideal

heterodyne detection measures the POVM {Λβ} where Λβ := 1
π |β〉〈β|.

In the narrowband scenario, we have a single mode of frequency ω. A power constraint

becomes a constraint on the mean number of photons per channel use, n̄ = Tr
(
ρ̂â†â

)
=
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∫
p(α)|α|2d2α. It is shown in [47] that the detection error is equivalent to additive

Gaussian noise, from which it is deduced that the capacity-achieving distribution is

given by the Gaussian input density p(α) = 1
πn̄ exp

(
− |α|

2

n̄

)
, which makes the expected

density operator ρ̂ a thermal state. The resulting capacity per channel use is calculated

to be C = log2(1 + n̄). Hall (1993) generalized this result to the coherent state channel

with further additive Gaussian noise.

As in the number-state channel, we can again fix the fractional bandwidth γ = B/f

and vary fn̄ to maximize the capacity per unit time, C. This capacity is found to

be Cmax = 1.1610
√

γP
h bits per second, or 0.58628 bits per photon, achieved when

n̄ = 3.9216 (see [47]).

We can also address the wideband case, as before, assuming a zero-temperature frequency-

multiplexed channel where we again divide the bandwidth into equal bins of size b, where

n̄i is the mean photon number of the ith bin. Our power constraint again takes the form

from Equation (64), and the capacity now becomes C = b
∑
i log2(1 + n̄i). We max-

imize this with respect to the n̄i, each a function of the corresponding bin frequency

fi through the fixed power constraint. Communication becomes too inefficient above

fc =
√

2P
h [47], leading to an optimal mean photon number of

n̄i =

 fc
fi
− 1, 0 ≤ f ≤ fc,

0, f ≥ fc
(65)

and a wideband capacity of CWB = fc
ln 2 = 1

ln 2

√
2P
h bits/s.

3. The Quadrature-Squeezed Channel

Suppose now that we modulate information in a single quadrature of a squeezed state,

and the receiver attempts to measure the single quadrature using homodyne detection.

In particular, the sender transmits states of the form ρ̂α1 = |α1〉(r,0)(r,0)〈α1|, where α1 is

a real number corresponding to a measurement of the real quadrature component â1 of

â = â1 + jâ2. Now information is modulated only on â1, whose noise is squeezed below

the level of a typical coherent state. We analyze the case where the squeeze parameter r

is the same for all sent states, though we could potentially do better with r as a function

of a1. We also choose 〈â2〉 = α2 = 0 so as not to waste energy, though squeezing â1

quadrature will increase noise of â2 and consume power. Our expected density operator

ρ̂ =
∫
p(α1)ρ̂α1dα1 is now with respect a probability density operator p(α1) on the real

numbers. Our mean photon number becomes n̄ = Tr
(
ρ̂â†â

)
= σ2 + sinh2 r, where

σ2 =
∫
p(α1)α2

1dα1, which we assume is fixed as we are operating at a single mode of

frequency ω with a power constraint.

Ideal homodyne detection corresponds to measuring the POVM {Λx1
}, where Λx1

=

|x1〉〈x1|. Once again, [47] argues that the detection error takes the form of additive

Gaussian noise, with the resulting capacity-achieving input distribution given by the
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Gaussian density function p(α1) = 1√
2πσ2

exp
(
− α2

1

2σ2

)
. The maximal capacity per

channel use is then C = log2(1 + 2n̄), which is achieved by choosing r to satisfy

e2r = log2(1 + 2n̄).

In this case, when the fractional bandwidth is fixed, the maximum capacity per unit

time is found to be Cmax = 1.1610
√

2γP
h bits per second (1.17256 bits per photon)

achieved when n̄ = 1.9608 (see [47]).

In the wideband regime, again using the same frequency-multiplexing argument from

before, the capacity per unit time takes the form C = b
∑
i log2(1+2n̄i). Communication

is now too inefficient above the frequency f̃c =
√

4P
h . The optimal mean photon number

for bin i is

n̄i =

 f̃c
2fi
− 1, 0 ≤ f ≤ f̃c,

0, f ≥ f̃c,
(66)

and the wideband capacity is CWB = f̃c
ln 2 = 1

ln 2

√
4P
h bits per second [47].

IX. Summary and Future Work

In this article, we reviewed the capacity of a quantum channel for transmitting classical

and quantum information. We discussed the necessary trade-offs between the rates of

sending both bits and qubits over a quantum channel, and how these rates are affected

in the presence of shared entanglement between sender and receiver. We also reviewed

several protocols which achieve these rates. Then, narrowing our focus to the free-

space optical channel, we reviewed common quantum states of photons and methods

for modulating information on them. We discussed the capacities associated with these

modulation techniques as well as the prospect of feasibly generating and exploiting

entanglement to boost the classical capacity of optical free-space communication.

Future theoretical studies over the next several years will explore the evaluation, achiev-

ability, and applicability to NASA’s communication systems of the four different types

of quantum channel capacities. Problems of interest include: designing practical near-

optimal ebit-sharing protocols and privacy protocols; quantifying the trade-off entangle-

ment-assisted capacity versus rate of ebit consumption; quantifying the superadditivity

of quantum capacity and private classical capacity; exploiting the relationship between

quantum computing and quantum communication; designing efficient codes for classi-

cal and entanglement assisted optical channels; quantifying how the various capacities

change when restricted to a small set of states and POVMs; determining the feasibility

of entanglement-manipulation when restricted to lab-implemented quantum transfor-

mations; computing the achievable capacity of further protocols such as superdense

teleportation [54]; constructing new quantum key-distribution protocols; and designing

quantum error-correcting codes to send classical and private information over a quantum

channel.
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